首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   1篇
航天技术   5篇
航天   1篇
  2014年   1篇
  2007年   1篇
  2003年   1篇
  1997年   1篇
  1987年   1篇
  1982年   2篇
排序方式: 共有7条查询结果,搜索用时 281 毫秒
1
1.
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (相似文献   
2.
A multidisciplinary study of this solar-interplanetary event is summarized by two main points: this flare was an incident in a process that began days before the flare, and continued after the flare; and the chain of events can be interpreted most simply in terms of energy input over scales of time and space that are large compared to the flare seen in the light of Hα. In support of these points, 5 aspects of the flare are described here: (1) hours before the flare, slow changes in coronal structure were associated with radio continuum emission, suggesting large-scale magnetic-field changes and the presence of energetic electrons; (2) long-lived X-ray loops require sustained energy input for at least an hour after the flare start; (3) interplanetary disturbance near earth is probably related to this limb flare, although the (expected) absence of a shock makes identification uncertain; (4) the coronal mass ejection overlay decaying magnetic field; (5) speed derived from frequency drift of the type II radio burst in the low corona, and from the travel time of the disturbance to 1 a.u., are about twice as great as the observed speed of the coronal mass ejection and of the disturbed solar-wind speed.  相似文献   
3.
Recent variations in normal meteorological conditions indicate the earth’s climate is changing in ways that may impact delicate ecological balances in sensitive regions. Identifying how those changes are affecting the biosphere is essential if we are going to be able to adapt to those changes and to potentially mitigate their harmful consequences. This paper presents a time series study of an alpine ecosystem in the Big Pine Creek watershed in California’s Eastern Sierra Nevada Mountain’s. Raw Landsat data covering the years 1984 through 2011 is converted to observed surface reflectance and analyzed for trends that would indicate a change in the ecosystem. We found that over the time period of the study, observed surface reflectance shows a general decline across the spectrum while our analysis of environmental data demonstrates statistically significant increases in temperatures. While declining reflectance in the visible and short wave bands are indicators of increased surface cover, the fact that the IR band also shows declines is consistent with a decline in tree density. This study provides a useful insight into the ecological response of the Big Pine Creek watershed to recent climate change. These findings suggest that alpine ecosystems are particularly sensitive to increasing temperatures. If these results are replicated in other alpine watersheds it will demonstrate that the biosphere is already showing the effects of a warmer environment.  相似文献   
4.
The Voyager Planetary Radio Astronomy Experiment detected strong 40 kHz to 850 kHz radio emissions from Uranus after closest approach and somewhat weaker emissions, but none above 100 kHz before closest approach, on the dayside of Uranus. The time variations of these emissions closely match Uranus' rotation, in a period of 17.24 h, and are evidently controlled by the strength and shape of its magnetic field. Throughout the entire encounter the polarization of the emission was approximately lefthand, corresponding to extraordinary mode. The emission associated with the nightside pole was a relatively smooth continuum (free of bursts) with a Gaussian-shaped rise and fall at low frequencies, 200 kHz for example, but a Gaussian with a central dip nearly to zero lasting a little less than two hours at frequencies above 400 kHz. Half a rotation later, when Voyager was near the magnetic equator of Uranus and farthest from the nightside dipole tip, the continuum emission was absent, but very strong, narrowband impulsive bursts appeared. Voyager successfully acquired one brief (24 seconds long) record of high time resolution radio observations in the range 500 to 700 kHz. This record, which was made near closest approach, shows a hierarchy of fast variations. Several days after closest approach, at the times of bowshock crossings outbound, the continuum emissions were modulated strongly in a manner suggestive of the presence of waves in the bowshock regions.

The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately ten-minute period, and, as early as several days before closest approach in the frequency range below 100 kHz, very intense isolated bursts lasting tens of minutes.  相似文献   

5.
Shock waves, as evidenced by type II radio bursts, often accompany flares and coronal mass ejection transients. At present, the density enhancements observed by coronagraphs are believed by some to be ejected matter from the low corona, and by others to be the compressed material behind a shock front. If the former is correct, one would expect in some cases to see a density enhancement, associated with the compression region of the shock, some distance ahead of the transient ejecta. Such a density enhancement has not been previously reported.The coronal transient of 1980 June 29 (0233 UT) was observed with the High Altitude Observatory's Coronagraph/Polarimeter aboard SMM. This flare-associated coronal transient event was well observed with the Culgoora Radioheliograph, including a well-developed type II burst. Visible on the coronagraph images is a faint circular arc moving out well ahead of the transient loops. This arc is moving at more than 900 km s?1 while the transient itself is moving at a speed of about 600 km s?1. Both the arc and transient appear to have originated either prior to the X-ray flare or at some height above the flare at the time of the flare. The type II burst observed at Culgoora is associated with the transient loops, and no type II emission is identified with the faint arc.Due to its great speed, we interpret the faint arc as a manifestation of a shock wave, but also envision a separate shock wave associated with the transient loops as evidenced by the type II emission. Preliminary density measurements are consistent with this interpretation, and show the outer shock wave associated with the faint arc to have a Mach number MA ≤ 1.7. At present we have no convincing explanation for the lack of a type II burst in association with the arc.This work was supported in part by NASA through grants NSG-7287 and NAGW-91 to the University of Colorado, Boulder, and S-55989 to the High Altitude Observatory, National Center for Atmospheric Research. The National Center for Atmospheric Research, NCAR, is sponsored by the National Science Foundation.  相似文献   
6.
We present first results from the Coronal Diagnostic Spectrometer (CDS) aboard the ESA/NASA Solar and Heliospheric Observatory (SOHO). CDS is a double spectrometer operating in the 151–785 Å range. This region of the solar spectrum is rich in emission lines from trace elements in the solar atmosphere, which can be used to derive diagnostic information on coronal and transition region plasmas. Early spectra are presented and well identified lines are listed. In addition, examples of images in selected wavelength ranges are shown, for a prominence, a loop system and a bright point, demonstrating well the power of such extreme ultraviolet observations.  相似文献   
7.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号